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ABSTRACT
Standard modern machine-learning-based imaging methods have
faced challenges in medical applications due to the high cost of
dataset construction and, thereby, the limited labeled training data
available. Additionally, upon deployment, these methods are usu-
ally used to process a large volume of data on a daily basis, im-
posing a high maintenance cost on medical facilities. In this pa-
per, we introduce a new neural network architecture, termed Lo-
GoNet, with a tailored self-supervised learning (SSL) method to
mitigate such challenges. LoGoNet integrates a novel feature extrac-
tor within a U-shaped architecture, leveraging Large Kernel Atten-
tion (LKA) and a dual encoding strategy to capture both long-range
and short-range feature dependencies adeptly. This is in contrast
to existing methods that rely on increasing network capacity to en-
hance feature extraction. This combination of novel techniques in
our model is especially beneficial in medical image segmentation,
given the difficulty of learning intricate and often irregular body
organ shapes, such as the spleen. Complementary, we propose a
novel SSL method tailored for 3D images to compensate for the
lack of large labeled datasets. The method combines masking and
contrastive learning techniques within a multi-task learning frame-
work and is compatible with both Vision Transformer (ViT) and
CNN-based models. We demonstrate the efficacy of our methods
in numerous tasks across two standard datasets (i.e., BTCV and
MSD). Benchmark comparisons with eight state-of-the-art models
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highlight LoGoNet’s superior performance in both inference time
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1 INTRODUCTION
Accurate medical image segmentation can facilitate disease diag-
nosis and treatment planning [19, 54, 59]. One of the fundamental
difficulties in this task is the presence of organs or structures that
span a large receptive field. These structures may have irregular
shapes, complex boundaries, or significant variations in appearance,
making the segmentation task particularly demanding. Additionally,
the high cost of expert annotation in this domain restricts the avail-
ability of large-scale labeled datasets. Consequently, it limits the
applicability of general domain computer vision methods [4, 17, 51].
Furthermore, deployed systems usually process a large volume of
images on a daily basis, which demands a substantial computational
resources and leaves a large carbon footprint [9, 25, 33]. In the
present work, we propose a fast and accurate image segmentation
architecture for the medical domain. We also propose a pre-training
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algorithm to exploit unlabeled images, and therefore, alleviate the
demand for human annotation.

Our architecture is based on the widely adopted U-shaped model.
We particularly employ two strategies to enhance the inference speed,
and simultaneously, maintain the prediction accuracy. First, in con-
trast to existing models that rely on Convolutional Neural Networks
(CNNs) and Vision Transformers (ViTs) as encoders [13, 28], we
employ the large-kernel attention model (LKA) [16] in our feature
extractor, which we term ULKANet (Unet Large Kernel Attention
Network). As we discuss in the next section, CNN and ViTs-based
models suffer from a high memory complexity, are slower during
inference, and lack a proper strategy to process image sequences.1

On the other hand, our method is demonstrably more efficient due
to the presence of LKA in the encoder.

Our second strategy is to enhance feature extraction through an
inductive bias. Learning short-range and long-range dependencies is
essential in medical image segmentation due to the large receptive
field of organs. Existing studies employ U-Net with the attention
mechanism, and vertically scale up their architecture to increase the
network capacity for handling feature dependencies [5, 37, 41]. In
contrast to these methods, we incorporate our encoder (ULKANet)
into a dual encoding algorithm to learn local (short-range) as well as
global (long-range) features. This enables us to keep the network size
manageable, and at the same time, maintain the prediction accuracy.
We term this model LoGoNet (Local and Global Network). Our
model is particularly advantageous for segmenting organs such as
the spleen, which has an elongated shape and irregular corners. Such
body organs demand the extraction of global and local features for
segmentation.

Finally, we propose a novel self-supervision technique for 3D im-
ages to address the lack of labeled training data. Our self-supervision
method combines masking and multi-task learning. Using a multi-
clustering algorithm, we generate a list of pseudo-labels for each
unlabeled image. We then methodically mask selected parts of these
images to implicitly feed the structural information of the unlabeled
data into our model. An property of our proposed SSL technique lies
in its versatility, as it seamlessly supports both CNN and ViT-based
models. This flexibility sets our strategy apart from conventional SSL
approaches, which often cater to a specific architecture [21, 30, 58].
Furthermore, our strategy leverages the inherent characteristics of
3D medical images, specifically embracing the concept of sequential
images and neighborhood information of voxels in 3D images.

We evaluate our techniques on numerous tasks across two datasets,
i.e., the BTCV dataset [15] for segmenting body organs, and the
MSD dataset [39] that encompasses diverse tasks in medical imag-
ing, ranging from liver tumors to cardiac and lung segmentation.
Additionally, we benchmark our method against eight state-of-the-
art baseline models. The results demonstrate the effectiveness and
efficiency of our techniques. To offer a thorough insight into the
unique attributes of our approach, we undertook extensive experi-
ments, meticulously showcasing our model’s distinguishing features
and capabilities. To summarize, our contributions are threefold:

1The term "sequence" in 3D medical imaging refers to a series of volumetric data that
can be either a temporal sequence, capturing changes over time in a specific anatomical
region, or a spatial sequence, consisting of different slices from a 3D volume to provide
a comprehensive view of the anatomy from various angles.

• We propose a resource-efficient model based on the commonly
used U-shaped architecture. Our model has a short inference time
and, at the same time, outperforms state-of-the-art methods. We
achieve this by employing two strategies: first, instead of relying
on CNN or ViT-based techniques, we utilize the large-kernel
attention method to reduce computational complexity. Second,
instead of vertically scaling up our network to improve feature
extraction, we use a dual encoding algorithm to facilitate the task.
We empirically demonstrate that our strategies combined achieve
the best inference time and the highest precision.
• We propose a multi-task self-supervision technique to exploit

unlabeled images, and to overcome the lack of labeled data by
employing a new masking approach specifically designed for 3D
images.
• We evaluate the efficacy of our model on numerous tasks across

two datasets, and show that it outperforms eight state-of-the-art
baseline models.

2 RELATED WORK
To model long-range dependencies in images, existing studies mostly
use vision transformers [2, 7, 14, 18, 19, 22, 31, 45, 48], and draw
ideas from sequence modeling in Natural Language Processing (NLP).
A limitation of these approaches is their treatment of images as 1D se-
quences, thereby overlooking the input’s inherent 2D or 3D structure.
They struggle to grasp the spatial relationships between pixels, lead-
ing to poor performance in tumor detection or organ segmentation
tasks. Additionally, they suffer from quadratic memory complexity,
leading to high processing costs and slowness for high-resolution
images, especially in the 3D context [29, 32, 40, 46, 55]. In contrast,
our proposed model, ULKANet, adopts an attention mechanism
with LKA2 to handle long-range dependencies while preserving the
spatial structure of the images. This distinctive property enables
our model to capture spatial patterns of the input more effectively,
resulting in more informative representations. This is particularly
advantageous in detecting tumors, where the conditions may extend
over a considerable area, and models that rely solely on local features
often fail to detect such cases [47].

In addressing dependencies within data, various techniques are
employed based on the range of the dependencies. CNN-based mod-
els have proven effective for short-range dependencies, leverag-
ing convolutional operations to identify relevant spatial patterns
efficiently. Through this approach, hierarchical representations are
learned, enhancing the understanding of the intrinsic structure of the
data [28, 36, 49, 60]. However, our methodology takes a comprehen-
sive approach, recognizing the importance of long and short-range
dependencies. We adopt a dual encoding strategy to achieve this,
incorporating an attention mechanism in parallel mode. This dual en-
coding technique enables the simultaneous capture and encoding of
both types of dependencies, providing a more holistic representation
of the underlying relationships in the data.

Next, the lack of labeled training data is a primary challenge in
medical image analysis. To address this challenge, some studies

2LKA [16] is a method for computer vision tasks that effectively captures long-range
relationships from input features. LKA reduces computational costs while generating
attention maps highlighting essential features without additional normalization functions
by decomposing large kernel convolutions into spatial local, long-range, and channel
convolutions.
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have focused on domain-specific pretext tasks, as seen in Ahn et al.
[1], Cao et al. [6], He et al. [23], Xu and Adalsteinsson [52], Zhao
et al. [56], Zhu et al. [62]. Others, such as Zhou et al. [57], adapt
contrastive learning techniques to suit medical data by focusing
on feature level contrast, creating homogeneous and heterogeneous
data pairs by mixing image and feature batches, and utilizing a
momentum-based teacher-student architecture. A comprehensive
evaluation of various SSL strategies for 3D medical imaging was
conducted by Taleb et al. [42]. Azizi et al. [3] demonstrated the
benefits of pre-training a model on ImageNet for dermatology image
classification, showcasing the potential of transfer learning in the
medical imaging domain.

Tang et al. [43] combined inpainting with contrastive learning to
improve medical segmentation. Recently, Chen et al. [11] introduced
a masked approach as a pretext task for 3D medical images. Their
method centers around the task of reconstructing the masked regions
of images, essentially treating it as a single-task objective. However,
in contrast to this approach, our work builds upon the concept of
masking but focuses on predicting (pseudo-)labels for masked im-
ages. This constitutes a multi-label learning framework where each
masked image is associated with more than one label.

Our work notes that capturing information in 3D medical images
not only relies on individual images but also involves considering the
sequence of images. To utilize this additional source of information,
we propose a multi-learning approach employing a batch of cluster-
ing algorithms. These algorithms aid in establishing multiple labels
for each image, enabling the model to learn the data characteristics
from various aspects.

3 PROPOSED MODEL
Figure 1a illustrates the architecture of our model LoGoNet. The
forward pass begins by processing the input data in parallel. We
have two modules in this stage, the global and the local modules.
In the global module, the original data cube3 is fed into our feature
extractor (ULKANet). In the local module, the same data cube is
partitioned into smaller cubes, and then, each cube is processed by a
separate feature extractor. Afterwards, the resulting feature tensors
are concatenated to reconstruct the input. Then the outputs of the
global and the local modules are aggregated by an element-wise
summation operator–note that they have the same dimensions. Fi-
nally, the resulting tensor is passed through a convolution kernel
followed by a 3D batch normalization operator and a GELU acti-
vation function to shape the input to our final classifier. Our final
classifier is a convolution kernel.

In the next section, we discuss our 3𝐷 encoder-decoder architec-
ture (ULKANet), which is armed with a 3𝐷 adaptation of LKA in
the encoding phase. We then explain our local-global dual encoding
strategy, which enables our model to extract feature dependencies at
varying scales. After describing our model in detail in Sections 3.1
and 3.2, we then explain our novel pre-training method in Section
3.3. We use this pre-training algorithm to initialize the parameters

3"Cube" typically refers to a three-dimensional (3D) region of interest (ROI) within
the volumetric medical image. Medical images, such as those obtained from MRI or
CT scans, are often represented as 3D volumes, where each voxel (3D pixel) contains
intensity or other information about the tissue or structures being imaged. A cube in
this scenario is a 3D subset of the entire image volume.

of our model before beginning to fine-tune the network on labeled
data.

3.1 LKA in Feature Extractor: An Alternative to
CNN and ViTs-based Models

Figure 1b illustrates an overview of our feature extractor (ULKA-
Net), which is a U-shaped model and has an encoder and a decoder.
The encoder consists of a sequence of blocks. Each block consists
of a repeating sequence of three components: a patch embedding
component, a chain of transformer-like modules that employ LKA
(𝐿𝑖 modules for 𝑖𝑡ℎ block of the encoder), and a layer normalization
component. For conciseness, Figure 1b only shows the top-level
blocks, while a detailed illustration of the model architecture and
inner components is provided in the appendix section 7.

The Patch Embedding component plays a crucial role in the pro-
cessing of input data within the encoder block, transforming the
input into a tensor that is subsequently passed to the next compo-
nent in the sequence. Throughout the current encoder block, the
dimension of the embedding vectors remains constant, denoted as
𝑑𝑖𝑚.

The mathematical representation of the projection operation is
defined as follows:

𝑃𝑎𝑡𝑐ℎ = 𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣3𝐷 (𝑋,𝑑𝑖𝑚, 𝑘, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =
𝑘

2
)) .𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(2),

(1)
where 𝑋 represents the input with five dimensions (𝑏,𝐶, seq, 𝐻,𝑊 ),
and 𝑏 is the batch size, 𝐶 is the channel size, 𝑘 is the size of the 3D
convolution kernel, 𝑑𝑖𝑚 is the number of channels for the output
of Conv3D, and Norm represents the batch normalization operator.
(seq, 𝐻,𝑊 ) denotes the size of the 3D input, and the flatten operation
results in a tensor with dimensions (𝑏, 𝑑𝑖𝑚, seq×𝐻 ×𝑊 ). The Patch
Embedding process serves to efficiently capture and represent the
relevant features of the input data, facilitating the subsequent stages
of the network architecture.

To enable our model to efficiently extract complex feature de-
pendencies that are often present in medical images, we opt for
using transformer modules. However, instead of using the regular
transformers with self-attention that is slow and needs more memory
[40], we use LKA [16] in the attention layer. This type of attention
mechanism decomposes large convolution kernels into spatial depen-
dencies and channel convolutions. It enables our model to go deeper
and remain memory efficient. The attention module is implemented
as follows:

Atts = Conv3D1×1 (DiConv3D (ChConv3D(𝑋 ))) , (2)

where 𝑋 is the input tensor and ChConv3D is a depth-wise convolu-
tion operating on a single channel. DiConv3D is a dilated depth-wise
convolution to broaden the receptive field and to enable the extraction
of long-range dependencies. The point-wise convolution Conv3D1×1
is applied to aggregate the information across the channels. The final
activations are obtained as follows:

Attention Value = Atts ⊙ 𝑋, (3)

where ⊙ is the element-wise product. The remaining components of
the transformer block follow the conventional structure of typical
transformers.
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Figure 1: 1a) Overview of our model LoGoNet. In order to take
into account the local and global feature dependencies in images,
they are fed into the model in parallel. In the local mechanism,
the input data is partitioned into small parts, and each part
is separately fed into our feature extractor (ULKANet). 1b)
Overview of the ULKANet Architecture. A U-shaped network
with the encoder-decoder design. Blue circles represent encoder
blocks, and green circles represent the decoder blocks. The + sign
represents element-wise summation, and the × sign represents
the concatenation operator.

The decoder in our model aims to restore the spatial resolution
of the input using a sequence of blocks (green circles in Figure 1b).
Each decoder block consists of a chain of three convolution modules
followed by an upsampling operation. The convolution modules
are responsible for volumetric convolution operation. They consist
of a Conv3D layer and a batch normalization layer, followed by a
LeakyReLU activation function. The upsampling operation scales
the resolution by a factor of two. As we stated earlier, a second larger
illustration of our architecture that shows the inner modules can be
found in the appendix section 7.

For each individual block in the encoder, the decoder has one
corresponding block. There is also an additional decoder block in the
bottleneck layer, as shown in Figure 1b. The input to each decoder
block is supplied by the block in the previous layer and also the
corresponding encoder block through a skip connection. In order to
enhance the reconstruction of input, we use the skip connections to
facilitate the transfer of high-level features [53] to the layers that are
responsible for the reconstruction task.

3.2 Dual Encoding Strategy: An Alternative to
Increasing Model Capacity

One of the difficulties in medical image segmentation is the presence
of organs that have complex shapes. For instance, the human gall-
bladder and spleen have an elongated structure. Hence, to achieve

Patching and Masking 

Random Sub-Sequence Selection

LoGoNet

Pre-Training Classification Head

𝒄𝟏
𝟏 𝒄𝟏

𝟐 𝒄𝟏
𝑵… 𝒄𝟐

𝟏 𝒄𝟐
𝟐 𝒄𝟐

𝑵… 𝒄𝟑
𝟏 𝒄𝟑

𝟐 𝒄𝟑
𝑵… 𝒄𝟒

𝟏 𝒄𝟒
𝟐 𝒄𝟒

𝑵…

Set of Pseudo-Labels to be Predicted for Selected Images

Figure 2: Illustration of our pre-training pipeline. We begin by
randomly selecting a set of𝑚 sequential images (here𝑚 is four),
on which we apply patching and masking. Then LoGoNet is
used to predict the set of pseudo-labels that we generated for
each distorted image (see Section 3.3 for details). During the pre-
training stage, a classification head (a feed-forward network) is
used on top of the model for prediction. This head is replaced
with a convolution head (see Figure 1a) for fine-tuning on the
segmentation task with labeled data.

satisfactory performance in the segmentation task, the model should
be able to detect and extract relevant features in multiple regions of
the input images, heavily relying on global features. On the other
hand, this organ has irregular corners. This characteristic requires
the model to be able to detect local features in multiple regions of
the input. While increasing the model capacity by adding more lay-
ers, and also composing larger training sets, will potentially enable
the model to automatically learn these regularities, this will likely
increase costs during both the deployment and development stages.

To reduce the burden of automatic feature mining and, conse-
quently, to reduce the costs, we propose to impose an inductive
bias [35] on the feature extraction process. We propose to have two
feature extractors in parallel, one focusing on the global scale and
another one focusing on the local scale–as shown in Figure 1a. The
global module is able to extract long-range dependencies due to
access to the original data cube. On the other hand, the local mod-
ule focuses on short-range dependencies. This is accomplished by
partitioning the input cube into smaller ones, allowing for a more
focused analysis and resulting in finer-grained features.

To implement our idea, we use one instantiation of ULKANet in
the global module, and a sequence of 𝑁 instantiations of ULKANet
in the local module. In the analysis section, we show that while
using only one ULKANet can reduce the model size and speed up
inference, it will also significantly deteriorate prediction accuracy.
Additionally, we show that alternative strategies, used in comparable
models, are either slower or achieve lower prediction accuracy. To
prepare the data for the local module, the input 3D image is split into
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𝑁 smaller cubes of size 𝐵×𝐵×𝐵. Given an image of size 𝑆 ×𝐻 ×𝑊 ,

the value of 𝐵 is obtained by 𝐵 =
3
√︃
𝑆×𝐻×𝑊

𝑁
.

To reconstruct the input data cube, the outputs of the local module
are concatenated, as shown in Figure 1a. In order to aggregate the
outputs of the global and local modules, we use an element-wise
summation operator. The resulting tensor is expected to represent
both global and local range dependencies.

3.3 Pre-Training Method: Exploiting Unlabeled
Images

Before fine-tuning our model on labeled data, we utilize a multi-
task pre-training technique to put the model weights in a favorable
state. This self-supervised approach allows the model to learn gen-
eral information from 3D medical images, without the necessity of
ground-truth labels.

Pre-training of our model is done in three stages. First, we me-
thodically mask certain regions of the input images. In this stage,
the goal is to capture long-range and short-range feature dependen-
cies. Second, we generate pseudo-labels for the masked images. The
model later learns to generalize to unseen cases by predicting the
pseudo-labels of the masked data. Finally, the masked images, along
with their pseudo-labels, are used to pre-train the model. Below we
explain each step.

3.3.1 Masking Algorithm. In 3D imaging, objects are depicted
across multiple 2D surfaces. Therefore, we argue that an effective
masking strategy should step beyond 2D inputs.

In order to help the model explore not only the dependencies
between pixels in 2D images but also the connections among pixels
that form 3D masses, we propose an algorithm to mask chains of
patches in an image sequence.4 We begin by randomly selecting
an image from the set of unlabeled data, with probability 𝜙1 for
selecting an individual image. Along the selected image, we also
retrieve the 𝑚 − 1 preceding images in the same sequence. Then,
we apply a masking technique to the images in the chain. Various
masking techniques can be used in this stage [34, 38]; we employ
the method introduced by Xie et al. [50]. Therefore, for each image
in the chain, we randomly select a patch size 𝑃 , and partition it into
𝐻×𝑊
(𝑃 𝑗 )2 patches, where𝐻 and𝑊 are the height and width of the image.

Finally, with the probability 𝜙2 we mask out each patch of the image.
Appendix section 8.1 shows the details about the masking algorithm,
and how we tune the hyperparameters.

In contrast to algorithms such as SimMIM [50], our proposed
approach distinguishes itself by selecting a sequence of images
and subsequently applying masking to that sequence. This method
facilitates the encoder in gathering information by focusing on the
interdependence of voxels within the sequence of images. Notably,
our algorithm operates independently of the specific model structure,
diverging from approaches seen in studies by Kakogeorgiou et al.
[30], He et al. [21], and Zhou et al. [58], all of which exhibit a
reliance on model structure. Furthermore, our approach is compatible
with Vision Transformer (ViT)-based [13] and CNN-Based models.

4Note that in speech processing, where data is naturally sequential, applying this
technique seems to be the default method [27]. However, to our knowledge, we are the
first to propose this technique in the computer vision domain.

3.3.2 Pseudo-Label Generation. Our pseudo-label generation
algorithm assigns labels to all the images in the unlabeled set. Later
in the pre-training pipeline, our model is asked to predict the pseudo-
labels of the masked out images in each sequence. The information
conveyed by the distorted images is insufficient for label prediction.
Therefore, the model must explore the associations between pixels
across multiple 2D images in the sequence to correctly predict the
pseudo-labels of the target images. In the analysis section, we em-
pirically show that this exploration task helps the model to learn the
properties of the domain and to generalize better.

A clustering algorithm is employed for the pseudo-label genera-
tion. For simplicity, we use the k-means clustering method, although
other types of clustering methods, such as hierarchical or spectral
methods, can be utilized. Given a random number 𝑘 as the predefined
number of clusters, we train a k-means clusterer on a random subset
(e.g. 10% in our experiments) of the unlabeled data. Then we use the
clusterer to label the entire unlabeled set. Note that masking is not
applied in any of these stages, and the clusterer has access to the
unmasked images. The obtained labels are used as pseudo-labels to
pre-train the model by predicting the corresponding labels for every
masked image.

The k-means clusterer is able to use all the properties of the
images to form the clusters. For instance, a cluster may constitute
images that illustrate elongated organs, while another cluster may
constitute images that depict organs that have particular corners.
During pre-training, the model is asked to recover the pseudo-labels
of a sequence of images that are distorted by masking. In order to
predict their correct labels, the model must discover the associations
between neighboring pixels. This pretext task enables the model to
learn long-range and short-range spatial dependencies effectively.

Assuming that a clustering method exploits a finite set of charac-
teristics in data to form the clusters, our model needs to learn these
characteristics to correctly assign each image to the associated clus-
ters. We conjecture that having 𝑁 different clusterers labeling the
data and then using our model to simultaneously predict these multi-
ple labels can further help the model gain broader knowledge from
the data. From a different perspective, we can assume that recovering
the characteristics of each clusterer is a separate pre-training task,
and then, concurrently recovering the characteristics of multiple
clusterers is a multi-task training. The efficacy of multi-tasking is
well-documented in the machine learning literature [8]. Figure 2
shows our pre-training pipeline. In this figure, 𝑁 denotes the total
number of clusterers, and 𝑐 𝑗

𝑖
denotes the pseudo-label generated by

𝑗-th clusterer for the 𝑖-th masked image in the sequence.

3.3.3 Pre-Training Loss Function. To pre-train our model, we
use a cumulative negative log-likelihood function on the model
predictions for the masked images as follows:

L = −
𝑁∑︁
𝑖=1

𝑆∑︁
𝑗=1

log(𝑝𝑖 (𝑒 |𝑥 𝑗 )), (4)

where 𝑁 is the number of clusterers, 𝑆 is the number of masked
images that can be calculated by 𝑆 = 𝑀 ×𝑄 , where 𝑀 is the length
of image sequence for masking, and 𝑄 is the number of concurrent
masked sequences, if present. 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑆 are masked images,
and 𝑝𝑖 (𝑒 |𝑥 𝑗 ) is the probability that the 𝑗-th masked image in the se-
quence (i.e., 𝑥 𝑗 ) is correctly assigned to the pseudo-label 𝑒 generated
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by the 𝑖-th clusterer. The value of 𝑝𝑖 (𝑒 |𝑥 𝑗 ) is calculated by a softmax
function on top of the pre-training classification head, which is a
simple feed-forward network.5 Therefore, given a clusterer, we have:

𝑝• (𝑒 |𝑥) = 𝑒𝑥𝑝 (𝑓𝑒 (𝑥)/𝜏)∑𝐾
𝑠=1 𝑒𝑥𝑝 (𝑓𝑠 (𝑥)/𝜏)

, (5)

where 𝑒𝑥𝑝 (•) is the exponential function, 𝐾 is the number of clusters
generated by the clusterer, 𝑒 is the cluster that the input image 𝑥
belongs to, and 𝑓𝑠 (𝑥) is the 𝑠-th logit of the pre-training classifica-
tion head. The hyper-parameter 𝜏 is called the softmax temperature.
The value of 𝜏 determines the strength of the gradients backpropa-
gated through the network. Lower temperature values increase the
magnitude of gradients [26]. This, in turn, reduces the standard devi-
ation of output probabilities–also known as sharpening the posterior
probabilities.

Our loss function (Equation 4), iterates over all the predictions
that our model makes during the pre-training stage and penalizes for
the errors. As we discussed earlier, our pretraining framework en-
ables LoGoNet to become familiar with the properties of the domain
to generalize better by exploiting unlabeled data. We empirically sup-
port this argument in our analysis section. Additional experiments
can be found in appendix section 8.1.

4 EXPERIMENTAL SETUP
In this section, we briefly describe the datasets used in the exper-
iments, provide a list of baseline models we compare to, and also
provide an overview of our setup.
Datasets. We use two widely used standard datasets. As the first
dataset, we use the BTCV dataset6 introduced by Gibson et al. [15].
This dataset contains 13 segmentation tasks, and each task has 40
data points obtained via abdominal CT scans. As the second dataset,
we use the MSD dataset7 introduced by Simpson et al. [39]. This
dataset contains a variety of tasks obtained via magnetic resonance
imaging (MRI), computed tomography (CT), and positron emission
tomography (PET). We use six different tasks from this dataset that
contain a total of 900 examples. As the unlabeled data, we use the
meta-dataset collected by Tang et al. [43], which consists of 4,500
examples. The images in this dataset are not annotated, and are 3D
scans covering a variety of organs. Detailed information about the
datasets can be found in appendix section 10.
Baselines. We compare LoGoNet to a suite of baseline models, in-
cluding those that use Visual Transformers or Convolutional Neural
Networks. We compare to nnUNet [28], Attention U-Net [37], Seg-
ResNetVAE [36], UNet++ [61], DiNTS (two variations of Search
and Instance) [24], SwinUNETR (feature size 48) [19], and UNETR
(feature size 32) [20]. A brief description about each baseline model
can be found in appendix 9.
Setup. We follow standard practices to carry out the experiments. We
use the Dice metric, a common metric for the image segmentation
task, to report the performance results. We conduct the experiments
in each dataset task separately and report the average results for
five runs in the BTCV dataset and two runs in the MSD dataset.

5Replacing the pre-training head with a finetuning head is an established practice in the
self-supervision literature [12].
6Available at https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
7Available at http://medicaldecathlon.com/

Detailed information about hyperparameter tuning, configurations,
and implementation can be found in appendix section 8.

Our default LoGoNet and ULKANet models have four encoder
blocks with 3, 4, 6, and 3 transformer modules in each block, respec-
tively. The dimensions of the embedding vectors in these models are
64, 128, 256, and 512, respectively.

5 RESULTS
5.1 Main Results
Table 1 compares our model to the baseline methods in terms of
inference time (FLOPs) and the number of trainable parameters in
the BTCV dataset. We see that our model has the lowest inference
time after SegResNetVAE. Tables 2 and 3 compare the accuracy
of our method to the baselines. We observe that the performance
of SegResNetVAE is significantly lower than that of ours. Taking
into account both the inference speed and the prediction accuracy,
our model seamlessly ranks first among all the models. Appendix
section 8 reports more experiments about the training time, test time,
and memory consumption.

Table 1 shows that our model is considered an average-sized
network. One noteworthy observation is that in some cases, e.g.,
nnUNet or DiNTS Instance, even though the number of trainable
parameters is on a par or smaller than ours, their inference speed is
substantially slower. Tables 2 and 3 show that our model exhibits
superior performance compared to the baseline methods. Specifi-
cally, when evaluating our proposed model without pre-training, it
outperforms the baselines across 13 out of 19 tasks. Furthermore,
incorporating our pre-training strategy into LoGoNet enhances its
performance even further, surpassing the baselines in 18 out of 19
tasks. These findings underscore the effectiveness and versatility
of our approach in tackling a diverse range of tasks with notable
efficacy.

In the BTCV dataset, LoGoNet outperforms the top three baseline
models on average by 2.7%, 3.0%, and 3.2%, respectively. Regarding
the inference time, our model outperforms the top three models by
17.6%, 14.8%, and 118.2%, respectively.

5.2 Analysis
In this section, we demonstrate the properties of our model from
multiple aspects. Specifically, we report a qualitative comparison
between our model and the best baseline model, evaluate our strategy
for extracting local and global features, evaluate our pre-training
approach, show the impact of model size on performance, analyze
the hyper-parameter sensitivity of our model, and finally, report an
ablation study on the steps in our pre-training method. The exper-
iments in this section are carried out in the BTCV dataset unless
stated otherwise.

We begin by qualitatively inspecting our model. Figure 3 com-
pares the output of LoGoNet to the best performing baseline model
in BTCV dataset, i.e., DiNTS Search (more qualitative comparisons
can be found in appendix section 11). We see that our model particu-
larly excels in segmenting organ boundaries. This can be attributed
to our effective strategy for extracting local-range dependencies,
which plays a crucial role in extracting details from input data. Our
model’s adeptness in capturing long-range dependencies allows it

https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
http://medicaldecathlon.com/
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Models SegResNetVAE SwinUNETR UNETR UNet++ nnUNet→
FLOPs (G) 15.50 329.84 264.59 4229.20 1250.65

# Param 3.9 M 62.2 M 101.7 M 84.6 M 30.7 M
→Models DiNTS Search DiNTS Instance Attention U-Net LoGoNet
FLOPs (G) 743.88 743.88 7984.21 246.96

# Param 74.1 M 74.1 M 64.1 M 67.5 M
Table 1: Comparison between our model and the baselines in terms of inference speed (in floating-point operations per second) and the
number of trainable parameters in the BTCV dataset. Due to the size of the images, the results are identical across the BTCV and
MSD datasets. See appendix section 8 for more experiments on resource consumption.

Models Spl RKid Lkid Gall Eso Liv Sto Aor IVC Veins Pan Rad Lad AVG
UNETR .912 .940 .938 .693 .690 .954 .754 .891 .830 .703 .734 .660 .577 .790

SegResNetVAE .941 .938 .933 .670 .718 .955 .745 .892 .848 .695 .783 .633 .528 .791
nnUNet .859 .944 .924 .796 .755 .960 .781 .894 .849 .756 .776 .675 .663 .818

Attention U-Net .955 .936 .930 .735 .739 .964 .770 .898 .852 .753 .763 .695 .688 .821
DiNTS Instance .935 .942 .938 .770 .769 .962 .743 .909 .857 .759 .782 .641 .691 .823

UNet++ .934 .931 .925 .810 .715 .961 .786 .900 .846 .747 .829 .685 .679 .827
SwinUNETR .952 .947 .945 .790 .770 .963 .755 .901 .850 .771 .760 .702 .659 .828
DiNTS Search .937 .934 .930 .788 .770 .960 .774 .904 .866 .751 .813 .670 .711 .831

LoGoNet .958 .949 .947 .818 .786 .969 .880 .912 .865 .769 .821 .726 .698 .854
LoGoNet + PRE .961 .947 .944 .866 .845 .970 .898 .936 .885 .791 .838 .738 .757 .875

Table 2: Performance of our model (in terms of Dice metric) compared to the baseline models in BTCV dataset. All experiments were
conducted using identical data splits, computing resources, and testing conditions to ensure a fair comparison. Additionally, to ensure
faithfulness to the original implementation of the baseline methods, we used their publicly available implementations available at
MONAI network repository. Spl: Spleen, RKid: Right Kidney, LKid: Left Kidney, Gall: Gallbladder, Eso: Esophagus, Liv: Liver, Sto:
Stomach, Aor: Aorta, IVC: Inferior Vena Cava, Veins: Portal and Splenic Venis, Pan: Pancreas, Rad: Right Adrenal Glands, Lad: Left
Adrenal Glands.

Models Col Spl Hep Pan Lun Car AVG
UNETR .677 .969 .715 .699 .730 .953 .790

SegResNetVAE .742 .968 .745 .740 .765 .951 .818
nnUNet .736 .977 .742 .742 .816 .958 .829

Attention U-Net - - - - - - -
DiNTS Instance .768 .979 .731 .742 .790 .963 .829

UNet++ .553 .975 .752 .760 .753 .961 .792
SwinUNETR .695 .967 .737 .738 .763 .957 .810
DiNTS Search .776 .980 .749 .749 .768 .960 .830

LoGoNet .786 .980 .757 .798 .802 .951 .846
LoGoNet + PRE .801 .980 .779 .833 .828 .958 .863

Table 3: Performance of our model (in terms of Dice metric)
compared to the baselines in MSD dataset. The baseline model
“Attention U-Net” was not runnable on regular chipsets which
each has 35 Gigabyte of memory in MSD dataset. Col: Colon
Cancer Primaries, Spl: Spleen, Hep: Hepatic vessels and tumor,
Pan: Pancreas Tumour, Lun: Lung Tumours, Car: Cardiac.

to grasp contextual information that extends over significant dis-
tances within the data. Simultaneously, its proficiency in handling
short-range dependencies ensures precision in capturing localized
patterns.

To further quantitatively support our strategy for extracting local
and global features in parallel, in the next experiment, we report

Models Gall Eso Veins Lad AVG
ULKANet .761 .782 .690 .684 .824
LoGoNet .818 .786 .769 .698 .854

Table 4: The efficacy of our parallel strategy for extracting local
and global features, i.e., the comparison between our method
(LoGoNet) and an alternative method that relies on a single
feature extractor (ULKANet).

the performance of our model compared to the regular method for
extracting features from medical images, which is relying on a single
feature extractor. This translates into comparing LoGoNet to our
feature extractor ULKANet. Table 4 reports the results. We observe
that our strategy enables our model to outperform the alternative
method.

In the next experiment, we report the efficacy of our pre-training
method. To carry out this experiment, we use the algorithm proposed
in Section 3.3 to initialize the weights of our model, and then, we
follow the regular fine-tuning steps. In Tables 2 and 3 (the last rows),
we report the results of this model for both datasets, indicated by
postfix PRE. We see that the improvements achieved by pre-training
are consistent across both datasets.

In the next experiment, we compare the effectiveness of our self-
supervised pre-training approach to the alternative methods. In partic-
ular we compare to SimMIM [50], Rubuk’s Cube [44], and SimCLR
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Ground Truth LoGoNet DiNTS Search

Figure 3: Output of LoGoNet compared to the best performing
baseline model in BTCV dataset, i.e., DiNTS Search. We see
that our model tangibly outperforms the mentioned model in
detecting organ boundaries.

SSL Approach Gall Eso Veins Lad AVG
SimMIM [50] .837 .829 .785 .733 .864

Rubik’s Cube [44] .815 .820 .780 .725 .859
SimCLR [10] .829 .803 .780 .720 .859

Our SSL Approach .866 .845 .791 .757 .875
Table 5: Performance of our multi-task self-supervised pre-
training method compared to the alternatives (number of clus-
ters is N=80).

[10] strategies. Table 5 reports the result. The numbers are obtained
by initializing LoGoNet. Notably, our proposed model exhibits su-
perior performance in three out of four experiments, showcasing
its effectiveness in a diverse set of tasks. The complete results are
available in the appendix 11. The comparison in Table 5 highlights
the competitive edge of our model. This indicates the robustness and
efficacy of our multi-task self-supervised learning methodology in
capturing meaningful representations across various domains.

An inherent advantage of our pre-training approach lies in its
versatility, as it is designed to be compatible with both CNN and
ViT-based models. This flexibility broadens the applicability of our
approach, allowing it to seamlessly integrate with different architec-
tural paradigms commonly used in computer vision tasks.

To understand the impact of model size on the prediction accu-
racy, we report the performance of our default model compared to
a larger variant. Our larger variant uses four encoder blocks with
3, 3, 24, and 3 transformer modules, respectively. The dimensions
of the embedding vectors in this model are 96, 192, 384, and 768,
respectively. Table 6 reports the results. Upon increasing the dimen-
sions of our model, we observed an improvement in results, though

Models Gall Eso Veins Lad AVG
LoGoNet .818 .786 .769 .698 .854

LoGoNet L .847 .781 .768 .710 .855
LoGoNet + PRE .866 .845 .791 .757 .875

LoGoNet L + PRE .921 .859 .805 .784 .891
Table 6: Performance of LoGoNet compared to LoGoNet L
(Number of clusters N=80, L stands for the large model variant).

it fell short of our initial expectations. We attribute this to the lim-
ited number of labeled data available. However, upon integrating
our pre-training methodology into our standard and larger variants
of LoGoNet, we noted a significant enhancement in performance,
particularly noticeable in the larger LoGoNet.

Model N = 1 N = 40 N = 80
Gall Eso Gall Eso Gall Eso

LoGoNet + PRE .830 .819 .843 .860 .866 .845
Table 7: Performance of our models at varying number of clus-
terers for pre-training. As the number of clusterers increases,
the contribution of multi-tasking becomes more noticeable.

In Section 3.3, we claimed that having multiple clusterers serves
as a multi-task training approach. In order to demonstrate the benefit
of having multiple clusterers, and also show the sensitivity of our
model to the number of these learners in our algorithm, we report
the results of our model with varying numbers of clusterers in Table
7. We see that as the number of clusterers increases, the performance
improves. The results support our hypothesis regarding the ability of
our model to extract broader knowledge from the unlabeled data in
the presence of multi-tasking.

Finally, we report an ablation study on the effectiveness of our
masking approach during the pre-training stage. In Section 3.3, we
argued that by distorting input images, the model must learn the
properties of neighboring pixels in order to predict the correct labels.
We then argued that this exploration task enables the model to faster
learn the domain and to generalize better. The results reported in
Table 8 supports our claim. We see that by incorporating the mask-
ing step, the performance noticeably improves signifying a better
generalizablity of our method.

Model w/ M wo/ M w/ M + wo/ M
Gall Eso Gall Eso Gall Eso

LoGoNet + PRE .866 .845 .845 .802 .851 .820
Table 8: Ablation study on the effectiveness of our masking
algorithm for 3D inputs. "w/ M" refers to pretraining with
masking, and "wo/ M" refers to pretraining without masking.
(BTCV Dataset)

In summary, we demonstrated the efficacy of our model in two
datasets across 19 segmentation tasks. We also compared our method
to eight recent baseline models, including those that use Visual
Transformers. Our results testify to the effectiveness of our novel fea-
ture extraction techniques. Our analysis shows that our pre-training
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method is successfully able to exploit unlabeled data to improve pa-
rameter initialization. We also showed that our method significantly
speeds up inference time compared to the best-performing models.

The computer vision domain is a rapidly evolving research field.
It seems unrealistic to expect long-term plans. However, with the
existing challenges in the medical domain, this community will
invest more in developing methods for mitigating the lack of large
labeled sets. Therefore, in the next step, we plan to explore Domain
Adaptation, which is one of the well-known methods for addressing
this challenge.

6 CONCLUSIONS
In this paper, we proposed a fast and accurate approach for 3D med-
ical image segmentation termed LoGoNet, which combines global
and local attention mechanisms. The localized mechanism in Lo-
GoNet significantly improves segmentation, especially for small
organ sections, while the incorporation of both global and local
scales captures effective long-range dependencies. Additionally, we
proposed a pre-training method to exploit unlabeled data to enhance
model generalization. Experiments in the BTCV and MSD datasets
demonstrated that LoGoNet surpasses the baselines, achieving su-
perior segmentation accuracy. The combination of LoGoNet with
pretraining further enhances performance. The utilization of masked
data in pretraining framework significantly boosts the model per-
formance to capture long-range dependencies, leading to a deeper
understanding of structural relationships within 3D images, thereby
improving segmentation accuracy.
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APPENDIX
The following section presents a more detailed description of our
feature extractor, ULKANet. Then, we provide the details of our
experiments, including the configurations of the baseline models,
our pre-training algorithm, and our model architecture. We continue
with a description of each used dataset, and finally, we conclude the
article by reporting an additional qualitative experiment.

7 DETAILED ARCHITECTURE OF ULKANET

Enc

Enc

Enc

Enc

Dec

Dec

Dec

Dec

Dec

Conv

× 2

Conv

× 2

Conv

× 2

Conv

× 2

Conv

Output

Encoder Decoder

×

×

×

×

Conv Conv3D
Batch
Norm

Leaky
ReLU

LKA Layer
Norm

PatchEnc

Upsample
factor 2

ConvDec × 3

× L 

Figure 4: Architecture of our feature extractor (ULKANet). The
numbers next to some of the components indicate a sequence of
the depicted component with the specified length.

Figure 4 illustrates our feature extractor. This feature extractor
is structured into two main components: an encoder and a decoder.
The encoder is comprised of a series of blocks, each consisting of a
recurring sequence of three essential elements: a patch embedding
component, which you can find the algorithm of this component
in the algorithm 1, a set of transformer-like modules employing
the LKA technique (The number of these modules in the sequence
is represented as 𝐿), and a layer normalization component. The

LKA component contains two crucial parts, first attention, which
we describe in part 3.1, and the MLP part, which you can find in
the algorithm 3; also, the algorithm of LKA part is available in the
algorithm 2. This architecture has been meticulously designed to
process and extract crucial input data features effectively. The patch
embedding operation transforms the input into a feature vector with a
dimension of 𝑑𝑖𝑚. Additionally, we incorporate a𝐶𝑜𝑛𝑣 block, which
encompasses three layers: a 𝐶𝑜𝑛𝑣3𝐷 layer, batch normalization, and
the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢 activation function.

Furthermore, the presence of a decoder block denoted as 𝐷𝑒𝑐
in Figure 4 is a crucial element. This block consists of three 𝐶𝑜𝑛𝑣
blocks and an upsampling layer, which upscales the input by a factor
of 2. This comprehensive structure enables our model to efficiently
handle the input data and extract meaningful features for further
processing.

Algorithm 1 Patch Embedding Pseudo Code

1: procedure PATCHEMBED3D(𝑋 , 𝑑𝑖𝑚, 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒,
𝑖𝑛𝑝𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙 , 𝑠𝑡𝑟𝑖𝑑𝑒) ⊲ Input: 𝑋 is the input tensor, and 𝑑𝑖𝑚 is
embed dimension

2: 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝐶𝑜𝑛𝑣3𝐷 (𝑖𝑛𝑝𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙, 𝑑𝑖𝑚, 𝑘𝑒𝑟𝑛𝑒𝑙 =

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒//2)
3: 𝑋 ← 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑋 )
4: 𝐵,𝐶, 𝐷, 𝐻,𝑊 ← 𝑋 .𝑆ℎ𝑎𝑝𝑒

5: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋 )
6: 𝑋 ← 𝑋 .𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(2).𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 (1, 2)
7: Return X, D, H, W
8: end procedure

Algorithm 2 Pseudo Code of LKA Block

1: procedure LKA(𝑋 , 𝑑𝑖𝑚, 𝐻 ,𝑊 ,𝑚𝑙𝑝𝑅𝑎𝑡𝑖𝑜) ⊲ Input: 𝑋 is
the input tensor. 𝑑𝑖𝑚, 𝐻 , and𝑊 are the dimensions of the input
tensor.

2: 𝐵, 𝑁,𝐶 ← 𝑋 .𝑠ℎ𝑎𝑝𝑒

3: 𝑋 ← 𝑋 .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 2, 1).𝑣𝑖𝑒𝑤 (𝐵,𝐶,𝑑𝑖𝑚,𝐻,𝑊 )
4: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋 )
5: 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒 ← 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋 ) ⊲ The attention

function is described before in the part 3.1
6: 𝑋 ← 𝑋 + 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒
7: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋 )
8: 𝑚𝑙𝑝𝑉𝑎𝑙𝑢𝑒 = 𝑀𝐿𝑃 (𝑋,𝑑𝑖𝑚,𝑚𝑙𝑝𝑅𝑎𝑡𝑖𝑜 × 𝑑𝑖𝑚)
9: 𝑋 ← 𝑋 +𝑚𝑙𝑝𝑉𝑎𝑙𝑢𝑒

10: 𝑋 ← 𝑋 .𝑣𝑖𝑒𝑤 (𝐵,𝐶, 𝑁 ) .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 2, 1)
11: Return X
12: end procedure

8 IMPLEMENTATION DETAILS
Our model architecture has incorporated four encoder blocks, a
feature in both the standard and the larger variants. However, it’s
important to note that our model is flexible and can seamlessly
adapt to the use of varying numbers of encoder layers. The primary
distinction between the regular and large models lies in the number
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Layer Number 1 2 3 4
L dim mlpRatio L dim mlpRatio L dim mlpRatio L dim mlpRatio

Normal 3 64 8 4 128 8 6 256 4 3 512 4
Large 3 96 8 3 192 8 24 384 4 3 768 4

Table 9: The number of LKA modules in each encoder block and mlpRatio for each encoder layer, as well as the embedding dimensions
of the Patch Embedding module for the regular and the large variants of our model.

Algorithm 3 Pseudo Code of MLP Block

1: procedure MLP(𝑋 , 𝑖𝑛𝑆𝑖𝑧𝑒, ℎ𝑖𝑑𝑑𝑒𝑛𝑆𝑖𝑧𝑒, 𝑜𝑢𝑡𝑆𝑖𝑧𝑒) ⊲ Input: 𝑋 is
the input tensor.

2: 𝑓 𝑐1← 𝐶𝑜𝑛𝑣3𝑑 (𝑖𝑛𝑆𝑖𝑧𝑒, ℎ𝑖𝑑𝑑𝑒𝑛𝑆𝑖𝑧𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙 = 1)
3: 𝑋 ← 𝑓 𝑐1(𝑥)
4: 𝑋 ← 𝐺𝐸𝐿𝑈 ((𝑋 )
5: 𝑑𝑤𝑐𝑜𝑛𝑣3𝑑 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑖𝑛𝑆𝑖𝑧𝑒, 𝑖𝑛𝑆𝑖𝑧𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙 = 3)
6: 𝑋 ← 𝑑𝑤𝑐𝑜𝑛𝑣3𝑑 (𝑋 )
7: 𝑋 ← 𝐺𝐸𝐿𝑈 ((𝑋 )
8: 𝑓 𝑐2 =← 𝐶𝑜𝑛𝑣3𝑑 (ℎ𝑖𝑑𝑑𝑒𝑛𝑆𝑖𝑧𝑒, 𝑜𝑢𝑡𝑆𝑖𝑧𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙 = 1)
9: Return X

10: end procedure

of transformer modules within each block and the dimensions of the
internal embedding vectors.

To provide a comprehensive understanding, Table 9 presents a
detailed comparison between our standard model and its larger coun-
terpart. It’s noteworthy that, despite any variations, the size of the
embedding vectors for each patch module and the mlpRatio remains
consistent across all encoder blocks.

This structural consistency ensures that the essential character-
istics of the model components are preserved, facilitating ease of
integration and adaptability. Whether opting for the standard or
larger version, users have the freedom to fine-tune the model’s per-
formance by adjusting the number of encoder layers to suit their
specific requirements. This flexibility is a key advantage of our
model, allowing for versatility in handling diverse applications and
tasks.

Table 10 presents a comparative analysis between our model
and several baseline methods. The inference time reported herein
reflects the average duration observed across five consecutive test
runs on the BTCV dataset, while training time is computed as the
average duration of the final ten epochs during model training on the
same dataset. This rigorous assessment facilitates a comprehensive
assessment of the performance and efficiency exhibited by each
approach.

In the implementation of the local strategy within LoGoNet, a
pivotal decision was made to partition each image tensor into 𝑁 = 8
segments. While this approach offers advantages in enhancing local
processing capabilities, it concurrently introduces a significant surge
in the number of trainable parameters. In addressing this challenge,
a thoughtful strategy has been employed within the local section of
LoGoNet.

Specifically, in the local processing segment of LoGoNet, a judi-
cious selection has been made to utilize only two encoder blocks,
in contrast to the four blocks employed in the global section, as
previously mentioned. This intentional divergence in the number of

encoder blocks between the local and global sections serves to strike
a balance between computational complexity and model expressive-
ness.

By limiting the local section to two encoder blocks, we manage to
mitigate the potential escalation in trainable parameters, thereby op-
timizing the trade-off between computational efficiency and model
performance. This strategic choice is rooted in a nuanced under-
standing of the interplay between local and global processing within
the overall architecture of LoGoNet.

In essence, our design rationale carefully tailors the number of
encoder blocks in each section to the specific demands of local and
global processing, ensuring a harmonious integration that optimally
leverages the strengths of both approaches. This meticulous consid-
eration of architectural choices reflects our commitment to achieving
a well-balanced and efficient model in LoGoNet.

8.1 Pre-Training Details
We used the scikit-learn implementation8 of the Mini Batch KMeans
algorithm as the clusterers in our pre-training pipeline. During the
training phase of the k-means models, we adopted a transformation
process that converted the input image from a 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑋 × 𝑌 × 𝑍
format to a vector representation of dimensions 𝑍 × 𝑇 , where 𝑇
is equivalent to 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑋 × 𝑌 . This transformation enabled us
to generate a label for each cluster per image slice, resulting in a
sequence of labels for a sequence of images. Subsequently, the model
underwent 350 iterations of training, with each iteration utilizing a
randomly selected 10% subset of the unlabeled data. To introduce
diversity and enhance robustness, we employed a stochastic approach
in determining the value of 𝐾 , randomly sampling from a range
spanning 80 to 500.

The information pertaining to pre-training is encapsulated in Ta-
ble 12. To train the pre-trained model, we leveraged the 𝐴𝑑𝑎𝑚𝑊
optimizer and fine-tuned the process by configuring specific param-
eters. In particular, we assigned values of 0.1 and 0.7 to 𝜙1 and 𝜙2
respectively. Additionally, the sequence of distorted images, denoted
as 𝑀 , was set to 5.

Table 11 presents the outcome of selecting hyperparameter values,
with results obtained from the BTCV dataset using the ULKANet
model. This tabulated information sheds light on the meticulous
decision-making process involved in determining specific values for
key hyperparameters, providing valuable insights into our experi-
mental configuration.

Our observations reveal that augmenting both the values of 𝑀
(length of sequenced mask images) and 𝜙1 (rate of sampled images)
results in an increased rate of masked images. However, this height-
ened rate poses challenges for our model, making it more intricate to

8Available at: https://scikit-learn.org/stable/
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Models SegResNetVAE SwinUNETR UNETR UNet++ Attention U-Net nnUNet
# Param 3.9 M 62.2 M 101.7 M 84.6 M 64.1 M 30.7 M

FLOPs (G) 15.50 329.84 264.59 4229.20 7984.21 1250.65
Inference Time (S) 1.73 6.16 5.89 11.74 19.74 2.87
Training Time (S) 0.96 1.98 1.83 2.82 3.70 1.01

Models DiNTS Search DiNTS Instance ULKANet LoGoNet ULKANet L LoGoNet L
# Param 74.1 M 74.1 M 40.2 M 67.5 M 121.20 M 172.54 M

FLOPs (G) 743.88 743.88 109.94 246.96 218.70 487.65
Inference Time (S) 6.33 6.28 3.45 5.38 5.06 14.49
Training Time (S) 1.89 1.87 1.01 1.63 1.49 2.29

Table 10: Comparison of the proposed models and baselines regarding trainable parameters, FLOPs, and computational efficiency.
Inference time is measured per case on a single GPU, varying with case size. Training time is based on epoch completion with 16 GPUs,
using a cube size of 96x96x96 for a case, not the entire case. Estimations derived from the BTCV dataset.

Hyperparameter M = 3 M = 5 M = 7
𝜙1 = 0.1 .835 .850 .847
𝜙1 = 0.2 .838 .847 .840
𝜙1 = 0.3 .841 .843 .838

Table 11: Hyperparameter tuning for sequenced mask image
length (M) and rate of sampled images (𝜙1): A detailed explo-
ration of hyperparameter variations to optimize key aspects of
our experimental setup. Result is for BTCV dataset and ULKA-
Net model.

exploit dependencies between successive slices for effectively cap-
turing information related to missing voxels. This delicate interplay
between hyperparameters emphasizes the necessity of finding an
optimal balance to enhance model performance, as an excessive in-
crease in masked images may impede the model’s ability to leverage
contextual dependencies within the data.

Furthermore, we introduced randomness in the selection of patch
sizes, choosing from the set (1, 2, 4, 8, 16, 32, 96).

Our innovative pre-training approach involves the incorporation
of a header designed to adapt the model output to align with the
requirements of our pseudo-labeling. Figure 2 shows the structure
of our proposed pre-training. The structure of this header can be
found in algorithm 4. This header modification serves as a crucial
step in optimizing the model’s output for seamless integration with
our pseudo-labeling methodology during the training process.

8.2 Configuration Setup
Table 14 provides a comprehensive overview of the specifics per-
taining to our training or fine-tuning procedures. This tabulated
information encapsulates crucial details, offering insights into the
intricacies of our training regimen. By examining the contents of this
table, readers can gain a nuanced understanding of the parameters,
configurations, and methodologies employed during the training or
fine-tuning phase of our experiments.

Our experimental setup involved the utilization of 8 nodes, each
equipped with dual-GPU chipsets. Each GPU within these chipsets
boasted a substantial 35GB of memory, ensuring ample resources
for running our experiments efficiently. To adhere to established

Algorithm 4 Pseudo Code of Pre-Training Classification Head

1: procedure PREHEAD(𝑋 , 𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚, 𝑥_𝑑𝑖𝑚, 𝑦_𝑑𝑖𝑚, 𝑧_𝑑𝑖𝑚,
𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚, 𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒) ⊲ Input: 𝑋 is the input tensor.

2: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚)
3: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚) .𝐺𝐸𝐿𝑈 (𝑋 )
4: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚)
5: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑛𝑢𝑚) .𝐺𝐸𝐿𝑈 (𝑋 )
6: 𝑋 ← 𝑋 .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 3, 2, 1, 4)

7: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋,𝑦_𝑑𝑖𝑚, 𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒)
8: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒).𝐺𝐸𝐿𝑈 (𝑋 )
9: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒, 𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒)

10: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 𝑐𝑙𝑎𝑠𝑠_𝑠𝑖𝑧𝑒).𝐺𝐸𝐿𝑈 (𝑋 )
11: 𝑋 ← 𝑋 .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 2, 1, 3, 4)

12: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑥_𝑑𝑖𝑚, 𝑥_𝑑𝑖𝑚//16)
13: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 𝑥_𝑑𝑖𝑚//16).𝐺𝐸𝐿𝑈 (𝑋 )
14: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑥_𝑑𝑖𝑚//16, 1)
15: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 1) .𝐺𝐸𝐿𝑈 (𝑋 )
16: 𝑋 ← 𝑋 .𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (0, 4, 3, 2, 1)

17: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑧_𝑑𝑖𝑚, 𝑧_𝑑𝑖𝑚)
18: 𝑋 ← 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚3𝑑 (𝑋, 𝑧_𝑑𝑖𝑚).𝐺𝐸𝐿𝑈 (𝑋 )
19: 𝑋 ← 𝐶𝑜𝑛𝑣3𝑑 (𝑋, 𝑧_𝑑𝑖𝑚, 𝑧_𝑑𝑖𝑚)
20: 𝑋 ← 𝑅𝑒𝐿𝑈 (𝑋 ) .𝑠𝑞𝑢𝑒𝑒𝑧𝑒 ()
21: Return X
22: end procedure

standards and foster equitable comparisons, we employed a compre-
hensive array of augmentation techniques to augment data variability.
It’s noteworthy that these augmentations were uniformly applied to
all models, encompassing both our proposed models and the base-
line models. This meticulous approach ensures a fair and unbiased
comparative analysis.

For the implementation of our models and the baseline models,
we leveraged the 𝑀𝑂𝑁𝐴𝐼 framework, which provided a robust and
versatile foundation for our experimentation. This framework facili-
tated the seamless integration of our methodologies, streamlining the
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Configuration Value
Optimizer 𝐴𝑑𝑎𝑚𝑊

Epochs 100
Batch Size per GPU 1
Number of GPUs 16
Weight decay 1𝑒 − 5
Optimizer momentum 𝛽1, 𝛽2 = 0.9, 0.999
Peak learning rate 1𝑒 − 4
Learning rate schedule 𝐿𝑖𝑛𝑒𝑎𝑟𝑊𝑎𝑟𝑚𝑢𝑝𝐶𝑜𝑠𝑖𝑛𝑒𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔𝐿𝑅

Warmup epochs 10
Dropout 0
Rand Spatial Crop Samples Data 96 × 96 × 96

MONAI Transforms: ScaleIntensityRanged

𝑎_𝑚𝑖𝑛 = -1000
𝑎_𝑚𝑎𝑥 = 1000
𝑏_𝑚𝑖𝑛 = 0
𝑏_𝑚𝑎𝑥 = 1
Clip = True

𝜏 0.1
𝜙1 0.1
𝜙2 0.7
M (Size of masked sequence) 5
𝑃 𝑗 (Size of Patches) 1, 2, 4, 8, 16, 32, 96

Table 12: Pre-Training settings for our proposed approach

implementation process and contributing to the reliability of our ex-
perimental results. 9 In the course of each iteration, we strategically
implemented a randomized cropping strategy, extracting two images
for each case during the training phase. This deliberate approach
was employed with the intent of diversifying the training dataset for
each input case within every epoch, thereby enhancing the overall
richness of the training process. The randomness introduced by the
cropping strategy contributed to a more robust and varied training
experience.

Furthermore, to fine-tune and optimize our training procedure,
we incorporated the advanced 𝐴𝑑𝑎𝑚𝑊 optimizer. This optimizer
played a pivotal role in adjusting the model’s weights during training,
ensuring an efficient convergence towards optimal performance. The
synergistic combination of the cropping strategy and the utilization
of the 𝐴𝑑𝑎𝑚𝑊 optimizer exemplifies our commitment to refining
the training dynamics for improved model efficacy.

To refine our model using labeled data, we employed the Dice-
CELoss as the objective function during the fine-tuning or train-
ing process. The DiceCELoss function serves as a crucial metric,
enabling us to strike a balance between the Dice coefficient and
Cross-Entropy, optimizing the model’s performance on the labeled
dataset. This choice of objective function reflects our commitment to
a meticulous fine-tuning or training process, ensuring that the model
is adept at capturing the nuanced patterns present in the labeled data.
The DiceCELoss is articulated by the following formulation:

𝐷𝑖𝑐𝑒𝐶𝐸𝐿𝑜𝑠𝑠 = 𝑤𝑑𝑙 × 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 + 𝑤𝑐𝑙 × 𝐶𝐸𝐿𝑜𝑠𝑠, (6)

where

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1 −
2 × ∑𝑁

𝑖=1 𝑝𝑖 × 𝑡𝑖 + 𝜖∑𝑁
𝑖=1 𝑝𝑖 +

∑𝑁
𝑖=1 𝑡𝑖 + 𝜖

, (7)

9Available at: https://monai.io/

and

𝐶𝐸𝐿𝑜𝑠𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑡𝑖 × log(𝑝𝑖 ) . (8)

Thus, our fine-tuning and training loss term is the weighted sum-
mation between the regular dice loss term and the cross entropy term.
𝑝𝑖 represents the predicted probability for the 𝑖-th class. 𝑡𝑖 represents
the ground truth label for the 𝑖-th class. 𝑁 represents the number of
classes. 𝜖 is a small constant (e.g., 1e-5) added to the denominator
to avoid division by zero.

LoGoNet
𝑤𝑑𝑙 𝑤𝑐𝑙 𝑤𝑑𝑙 𝑤𝑐𝑙 𝑤𝑑𝑙 𝑤𝑐𝑙
1.0 1.0 0.0 1.0 1.0 0.0

.854 .841 .847
Table 13: Performance outcomes with varied weights for Dice-
CELoss: The presented results represent the average across all
13 organs in the BTCV dataset using the LoGoNet model.

Our experimentation has revealed that assigning equal weights
to both CELoss and DiceLoss yields more favorable outcomes, sur-
passing the performance achieved with other weight ratios. The
results of various weight configurations for losses are presented in
Table 13. By according equal significance to both Cross-Entropy
Loss (CELoss) and Dice Loss, we strike a balance that enhances
the model’s ability to effectively capture diverse patterns in the data.
The results highlight the critical role of assigning equal weights in
attaining optimal outcomes and underscore the robustness of this
approach within the framework of our experimental setup. This ob-
servation emphasizes the significance of maintaining a balanced
weighting scheme, showcasing its effectiveness in ensuring stability
and reliability across various experimental conditions. The consistent
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Configuration BTCV MSD
Optimizer AdamW
Epochs 5000 1000
Batch Size per GPU 2 1
Number of GPUs 16
Weight decay 1𝑒 − 5
Optimizer momentum 𝛽1, 𝛽2 = 0.9, 0.999
Peak learning rate 1𝑒 − 4
Learning rate schedule LinearWarmupCosineAnnealingLR
Warmup epochs 100 50
Dropout 0
Rand Spatial Crop Samples Data 96 × 96 × 96

MONAI Transforms: ScaleIntensityRanged

𝑎_𝑚𝑖𝑛 = -175
𝑎_𝑚𝑎𝑥 = 250
𝑏_𝑚𝑖𝑛 = 0
𝑏_𝑚𝑎𝑥 = 1
Clip = True

𝑎_𝑚𝑖𝑛 = -100
𝑎_𝑚𝑎𝑥 = 2000
𝑏_𝑚𝑖𝑛 = 0
𝑏_𝑚𝑎𝑥 = 1
Clip = True

MONAI Transforms: Spacingd
𝑠𝑝𝑎𝑐𝑒_𝑥 = 1.5
𝑠𝑝𝑎𝑐𝑒_𝑦 = 1.5
𝑠𝑝𝑎𝑐𝑒_𝑧 = 2.0

𝑠𝑝𝑎𝑐𝑒_𝑥 = 1.0
𝑠𝑝𝑎𝑐𝑒_𝑦 = 1.0
𝑠𝑝𝑎𝑐𝑒_𝑧 = 1.0

Data Augmentation: RandFlipd prob for each axis = 0.2
Data Augmentation: RandRotate90d prob = 0.2

Data Augmentation: RandScaleIntensityd
factors = 0.1
prob = 0.1

Data Augmentation: RandShiftIntensityd
offsets = 0.1
prob = 0.1

Table 14: Training and fine-tune settings for all proposed and baseline models

performance across diverse scenarios further validates the efficacy
of the equitable weighting strategy adopted in our study.

9 BASELINES
This section will comprehensively discuss our baseline models, draw-
ing comparisons with LoGoNet across a spectrum of approaches,
encompassing ViT and CNN-base models.
nnUNet [28] is a framework based on the U-Net architecture, tai-
lored for medical image segmentation. It simplifies the process of
adapting U-Net to new tasks by focusing on crucial aspects like pre-
processing, training, and inference. Through minimal modifications
to U-Net and dynamic adjustments in network parameters. The nnU-
Net stands out for its robustness and adaptability compared to other
segmentation methods. By emphasizing essential aspects and avoid-
ing unnecessary architectural complexities, nnU-Net consistently
delivers high-quality segmentation results. While nnU-Net may pro-
vide high segmentation accuracy, its runtime efficiency might be a
concern, especially in real-time or resource-constrained applications.
Optimizing the model for faster inference without compromising
accuracy can be challenging.
Attention U-Net [37] proposes a novel attention gate (AG) model
for medical imaging segmentation, specifically targeting structures
like the pancreas with varying shapes and sizes. By integrating
AGs into standard CNN architectures such as the U-Net, the model
automatically learns to focus on relevant regions in input images
while suppressing irrelevant areas, thereby eliminating the need for
explicit external organ localization modules. Despite its strengths,

the Attention U-Net may face certain limitations. While AGs offer
significant improvements in prediction accuracy and computational
efficiency, their effectiveness may vary depending on the complexity
of the target structure and the dataset used. Additionally, the pro-
posed model’s reliance on attention mechanisms could potentially
introduce additional computational overhead during training and
inference stages, particularly if not carefully optimized.
SegResNetVAE [36] employs an encoder-decoder structure aug-
mented with a variational autoencoder (VAE) branch. The VAE com-
ponent serves to regularize the shared encoder, aiding in learning
from limited training data by reconstructing input images along-
side segmentation during training. This regularization helps mitigate
overfitting and enhances the network’s ability to generalize to un-
seen data, ultimately leading to improved segmentation accuracy.
While the VAE regularization proves beneficial for mitigating overfit-
ting and improving generalization, it adds complexity to the overall
architecture, potentially hindering interpretability and requiring sig-
nificant computational resources for training and deployment.
UNet++ [61] introduces a novel approach to image segmentation
by addressing key limitations in existing models such as U-Net and
FCNs. It achieves this by employing an ensemble of U-Nets with
varying depths, which share a common encoder and are trained si-
multaneously using deep supervision. This alleviates the need for
exhaustive architecture search, allowing for flexible depth selection
based on task difficulty and available labeled data. Additionally,
UNet++ redesigns skip connections to enable flexible feature fusion
across varying semantic scales. By allowing for the aggregation of
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Task Colon Cancer Spleen Hepatic Vessels Pancreas Tumour Lung Tumours Cardiac
Train 119 35 241 210 51 14

Validation 13 3 26 23 5 2
Test 14 9 61 57 13 4

Table 15: Number of cases for each task of MSD dataset

Models Spl RKid Lkid Gall Eso Liv Sto Aor IVC Veins Pan Rad Lad AVG
UNETR .912 .940 .938 .693 .690 .954 .754 .891 .830 .703 .734 .660 .577 .790

SegResNetVAE .941 .938 .933 .670 .718 .955 .745 .892 .848 .695 .783 .633 .528 .791
nnUNet .859 .944 .924 .796 .755 .960 .781 .894 .849 .756 .776 .675 .663 .818

Attention U-Net .955 .936 .930 .735 .739 .964 .770 .898 .852 .753 .763 .695 .688 .821
DiNTS Instance .935 .942 .938 .770 .769 .962 .743 .909 .857 .759 .782 .641 .691 .823

UNet++ .934 .931 .925 .810 .715 .961 .786 .900 .846 .747 .829 .685 .679 .827
SwinUNETR .952 .947 .945 .790 .770 .963 .755 .901 .850 .771 .760 .702 .659 .828
DiNTS Search .937 .934 .930 .788 .770 .960 .774 .904 .866 .751 .813 .670 .711 .831

ULKANet .954 .936 .938 .761 .782 .964 .814 .885 .831 .690 .786 .690 .684 .824
LoGoNet .958 .949 .947 .818 .786 .969 .880 .912 .865 .769 .821 .726 .698 .854

ULKANet + PRE .954 .940 .933 .836 .794 .966 .853 .899 .854 .760 .823 .703 .734 .850
LoGoNet + PRE .961 .947 .944 .866 .845 .970 .898 .936 .885 .791 .838 .738 .757 .875

ULKANet L .948 .938 .933 .832 .789 .967 .832 .888 .862 .744 .784 .720 .690 .841
LoGoNet L .960 .944 .922 .847 .781 .971 .840 .917 .872 .768 .841 .742 .710 .855

ULKANet L + PRE .960 .943 .935 .869 .863 .970 .914 .891 .861 .806 .850 .734 .761 .874
LoGoNet L + PRE .986 .963 .954 .921 .859 .969 .911 .954 .871 .805 .846 .759 .784 .891

Table 16: Performance of our model (in terms of Dice metric) compared to the baseline models in BTCV dataset. Spl: Spleen, RKid:
Right Kidney, LKid: Left Kidney, Gall: Gallbladder, Eso: Esophagus, Liv: Liver, Sto: Stomach, Aor: Aorta, IVC: Inferior Vena Cava,
Veins: Portal and Splenic Venis, Pan: Pancreas, Rad: Right Adrenal Glands, Lad: Left Adrenal Glands

features from different scales, UNet++ significantly enhances seg-
mentation quality. Despite its innovative design and notable benefits,
UNet++ may pose certain challenges. The increased complexity
introduced by the ensemble of U-Nets and deep supervision may
require additional computational resources and careful management
during training. This could potentially limit accessibility for smaller
research groups or organizations with limited resources.
DiNTS [24] is neural architecture search (NAS) specifically tailored
for 3D medical image segmentation tasks. The key innovation of
DiNTS lies in its differentiable search framework, which enables
efficient exploration of a highly flexible network topology search
space. One notable benefit of DiNTS is its ability to support more
complex network topologies, allowing for greater flexibility in adapt-
ing to the diverse characteristics of medical image segmentation
tasks. Additionally, the proposed topology loss and memory budget
constraints mitigate the common challenges associated with differen-
tiable topology search, such as the discretization gap and high GPU
memory usage. However, a potential weakness of DiNTS lies in its
reliance on GPU resources during the search process, which could
pose scalability challenges for resource-constrained environments.
UNETR [20] introduces a novel approach to 3D medical image
segmentation by integrating transformers, renowned for their effec-
tiveness in capturing long-range dependencies, into the segmentation
pipeline. Traditional convolutional neural networks (CNNs) strug-
gle with capturing global context due to their localized receptive

fields. UNETR addresses this limitation by formulating the segmen-
tation task as a sequence-to-sequence prediction problem, where a
transformer encoder is employed to learn contextual representations
from 3D input volumes. This architecture follows a "U-shaped" de-
sign, connecting the transformer encoder to a CNN-based decoder
through skip connections, facilitating the computation of the final
segmentation output. Transformers excel in capturing global con-
text and long-range dependencies, which are crucial for accurate
segmentation, especially in medical images with complex struc-
tures. By leveraging transformers, UNETR can effectively capture
spatial relationships across the entire volume, leading to improved
segmentation performance. However, UNETR also presents some
weaknesses. Transformers can introduce computational complex-
ity, potentially increasing training and inference time, which could
be a limiting factor in resource-constrained environments. More-
over, transformers may struggle with capturing fine-grained local
details compared to CNNs, which could impact the model’s ability
to accurately segment intricate structures.
SwinUNETR [19] introduces a novel architecture for semantic seg-
mentation of brain tumors in MRI images, combining the hierar-
chical encoding capabilities of Swin transformers with a U-shaped
network design and CNN-based decoders connected via skip connec-
tions at various resolutions. By leveraging the self-attention mecha-
nism of Swin transformers, the model effectively captures long-range
dependencies, enabling accurate segmentation of tumors with di-
verse shapes and sizes. This hierarchical architecture allows for the
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learning of multi-scale contextual representations, contributing to
improved segmentation results. Despite its advantages, Swin UN-
ETR also exhibits certain weaknesses. The model’s complexity and
resource intensiveness pose challenges, requiring significant compu-
tational resources for training and inference due to the combination
of Swin transformers and CNN-based decoders. Moreover, Swin
UNETR’s performance heavily depends on the availability and qual-
ity of training data, making it susceptible to limitations or biases in
datasets.

10 DATASET
This section is dedicated to providing a thorough exposition of
the datasets meticulously chosen for inclusion in our experimental
analyses. The selection of these datasets is pivotal in influencing the
outcomes of our study, serving as the cornerstone for the evaluation
and refinement of our methodologies. A detailed exploration of each
dataset is undertaken to illuminate its characteristics and significance
within the context of our experimental framework.

10.1 Unlabeled Datasets
As unlabeled data, we use a set of 4500 distinct data points re-
published as a meta-dataset by Tang et al. [43]. Each of these data
points represents a volumetric 3D scan specifically focusing on key
anatomical areas such as the chest, abdomen, head, and neck. This
deliberate selection of regions ensures a thorough examination of
the anatomical aspects relevant to our research. This meta-dataset
consists of the following dataset:

• HNSCC 10: imaging, radiation therapy, and clinical data of
head and neck squamous cell carcinoma (HNSCC) patients
at MD Anderson Cancer Center, the dataset comprises 954
samples.
• LUNA16 11: is a publicly available data set and challenge

designed to advance the development of computer-aided de-
tection (CAD) algorithms for the accurate identification of
pulmonary nodules in low-dose computed tomography (CT)
scans, contributing to the improvement of lung cancer detec-
tion, and the data set consists of 842 samples.
• CT Colonography12: part of the National CT Colonography

Trial, this dataset comprises 1532 cases of CT colonogra-
phy imaging accompanied by polyp descriptions and their
respective locations within colon segments. It serves as a
valuable resource for validating the use of CT colonography
in detecting colorectal neoplasia.
• CT Images in COVID-19 13: this collection of medical imag-

ing data includes CT scans and associated clinical informa-
tion collected during the COVID-19 pandemic. The dataset
includes 722 samples.

10Available at: https://wiki.cancerimagingarchive.net/display/Public/HNSCC
11Available at: https://luna16.grand-challenge.org/Data/
12Available at: https://www.cancerimagingarchive.net/collections/
13TCIA COVID-19 Datasets

• LIDC-IDRI 14: is a web-accessible collection of thoracic
computed tomography (CT) scans with marked-up annota-
tions of lung nodules, designed for the development and evalu-
ation of computer-assisted diagnostic methods for lung cancer
detection, the dataset comprises 450 samples.

10.2 BTCV Dataset
The provided dataset15 consists of 40 abdominal CT scans that
were collected under Institutional Review Board (IRB) supervision.
These scans are sourced from a combination of an ongoing col-
orectal cancer chemotherapy trial and a retrospective ventral hernia
study. The CT scans were obtained during the portal venous con-
trast phase, capturing the anatomical details of the abdominal region.
The dataset showcases variability in terms of volume sizes, with
the scans ranging from 512 × 512 × 85 to 512 × 512 × 198 voxels.
Additionally, the field of view (FOV) varies, spanning approximately
280 × 280 × 280,mm3 to 500 × 500 × 650,mm3. In-plane resolution
fluctuates between 0.54 × 0.54,mm2 and 0.98 × 0.98,mm2, while
slice thickness varies from 2.5,mm to 5.0,mm. Standard registration
data for the dataset has been generated using NiftyReg.

For the preparation of the data set, we sliced at precise intervals
of 1.5 mm in both the x and y directions and 2 mm for the isotropic
resolution in the z-direction.

The dataset includes manual segmentations of thirteen abdominal
organs. The segmentation was performed on a volumetric basis,
providing accurate organ boundaries within the CT scans. The list
of segmented organs includes the spleen, right kidney, left kidney,
gallbladder, esophagus, liver, stomach, aorta, inferior vena cava,
portal vein and splenic vein, pancreas, right adrenal gland, and left
adrenal gland. It’s important to note that some patients within the
dataset may not have a right kidney or gallbladder, and as a result,
these organs might not be labeled in those specific cases.

The dataset serves as a valuable resource for advancing auto-
mated segmentation approaches in the field of medical imaging.
Researchers can utilize this dataset to develop and refine algorithms
that accurately identify and segment abdominal organs in CT scans.

10.3 MSD Dataset
This dataset16 contains ten different tasks. Within this data set, a
wide variety of organs and structures are known to encompass vital
anatomical regions of significance, such as the heart, liver, prostate,
and pancreas.

To use the dataset, we divided it into exact 1.0 mm intervals along
the x, y, and z directions, maintaining isotropic resolution for all
tasks.

We evaluated our models using six tasks from the MSD dataset.
Table 15 displays the case numbers for the various tasks. The initial
task focuses on "Colon Cancer Primaries" and poses a challenge due
to its varied and irregular appearance, referred to as "heterogeneous"
(heterogeneous indicating dissimilar components or elements, caus-
ing irregular or variegated appearances; for instance, a dermoid cyst
exhibits heterogeneous attenuation on CT scans).

14Available at: wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
15Available at: https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
16Available at: http://medicaldecathlon.com/

https://wiki.cancerimagingarchive.net/display/Public/HNSCC
https://luna16.grand-challenge.org/Data/
https://www.cancerimagingarchive.net/collections/
wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
http://medicaldecathlon.com/
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Ground Truth LoGoNet DiNTS Search SwinUNETR48 UNet++ Attention U-Net

Figure 5: A visualization of LoGoNet outputs compared to the output of the baseline models. Our model outperforms the baselines,
particularly in the segmentation of small organ sections.

SSL Approach Spl RKid Lkid Gall Eso Liv Sto Aor IVC Veins Pan Rad Lad AVG
SimMIM [50] .961 .949 .940 .837 .829 .970 .879 .928 .880 .785 .827 .726 .733 .864

Rubik’s Cube [44] .961 .940 .946 .815 .820 .971 .878 .922 .872 .780 .825 .720 .725 .859
SimCLR [10] .960 .944 .942 .829 .803 .969 .882 .920 .870 .780 .829 .726 .720 .859

Our SSL Approach .961 .947 .944 .866 .845 .970 .898 .936 .885 .791 .838 .738 .757 .875
Table 17: Complete Result of Performance Comparison of Our Proposed Multi-Task Self-Supervised Learning Approaches. (Number
of Clusterer is N=80)

The subsequent task revolves around "Spleen," involving a chal-
lenge related to the significant variation in foreground size. The
following task targets "Hepatic vessels and tumor," presenting a
challenge in dealing with small tubular structures adjacent to the het-
erogeneous tumor. Moving on, we have the "Pancreas Tumor" task,
which aims to segment the liver and tumor, posing an unbalanced
labeling challenge with large (background), medium (pancreas), and
small (tumor) structures.

The "Lung Tumors" task comes next, presenting the challenge
of segmenting a small target (cancer) within a large image. Lastly,
we have the "Cardiac" task, which focuses on segmenting the Left
Atrium and faces the challenge of a small training dataset with
significant variability.

11 QUALITATIVE AND QUANTITATIVE
RESULTS

In this section, we report additionall qualitative and quantitative
results of our model compared to the baseline models. These experi-
ments we carried out in BTCV dataset. For all the experiments, to
accommodate the constraints imposed by the limited RAM capacity
of the GPUs employed for training, we implemented a cropping
approach to diminish the size of the model. We opted for a cropping
approach with dimensions of 96× 96× 96. To derive the final results,
we employed a sliding window inference methodology, in which the
required data were systematically passed with a 0.5 mm overlapping
mechanism.
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In Tables 16, the results of our proposed model and pre-training
approach are compared to the baselines. This analysis provides valu-
able insights into the effectiveness and performance gains achieved
by our proposed methodology when compared against existing base-
line methods.

The data presented in Table 17 illustrates the superiority of our in-
novative multi-task self-supervised learning strategy when compared
to other baseline methods, as evidenced by the aggregated results on
the BTCV dataset. Notably, our proposed approach showcases ex-
ceptional efficacy across three out of four experiments, highlighting
its versatility and effectiveness across various tasks.

In Figure 5, the comprehensive results of our proposed model are
presented alongside the outcomes of various baselines. Our model,
equipped with a combined local and global attention mechanism,
showcases superior performance in segmenting various body re-
gions, including even the smaller anatomical parts. This enhanced
segmentation capability is attributed to the ability of our model to ef-
fectively capture both local and long-range dependencies within the
data, making it particularly proficient in delineating intricate struc-
tures within medical images. This mechanism provides a substantial
advantage over the baselines, enabling our model to deliver more
accurate and detailed segmentations across a wide range of body
regions, which is essential for medical image analysis and diagnosis.
The combination of global and local scales in our model, as well as
its emphasis on meaningful feature extraction, makes it a powerful
tool for improving the accuracy and precision of medical image
segmentation tasks, particularly in scenarios where small anatomical
details are crucial for accurate diagnosis.
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