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Abstract. Deep learning’s role in tackling complicated engineering
problems becomes more and more effective by advances in computer
science. One of the classical problems in physics is representing the solu-
tion of heat propagation in the arbitrary 2-D domain. Study of two-
dimensional heat transfer provides a precious bed for related physical
issues. In this work, by using finite volume method, we solved the two-
dimensional heat equation on the arbitrary domain with specified limi-
tations (considering three heated rectangular obstacles inside the main
domain) for 100000 different cases. These cases were divided into big
batches in order to reduce the computational cost. The solution for each
case was used as sample data to train our deep neural network. After
the training process, deep learning results have been compared to results
which were produced by the commercial program (ANSYS). After ana-
lyzing deep learning efficiency, obviously, our network successfully was
able to predict the solution of heat transfer physics with satisfactory
precision.

Keywords: Deep neural network · Regularization · Laplace equation ·
Heat conduction

1 Introduction

Deep learning as a subset of artificial intelligence plays a significant role in
various studies, and nowadays, in most of the complicated cases, deep learning
is being used to simplify complex computations. Sound recognition [24], pattern
recognition [12], and suggestion of relevant topics on the Internet websites [27] are
the only small numbers of enormous applications of this powerful tool. The key
feature of deep learning is that the layers which are used in learning procedure are
not designed by the human, and they perform by using data which is fed to the
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network as an inputs [16]. This feature of deep learning makes it an appropriate
choice for representation systematic solution for a wide range of problems with
high complexity [2].

On the other hand, Partial Differential Equations as cornerstones of study-
ing dynamical systems, portray a precise image of many natural processes [23].
Although using PDEs to describe natural phenomena is an elegant way of mod-
elling, several factors such as high dimensionality, and complex domains, made
it tough to perform analytical solutions in most cases [10]. Representing new
methods for solving partial differential equations have always been an interest-
ing subject in computational science [8]. By advances in machine learning and
specifically in deep learning the idea of using artificial neural networks for solving
differential equations became more favorable [5,33].

The utility of deep learning method compared to other existing numerical
methods for solving differential equations has several advantages. Deep learn-
ing provides a valuable approach to deal with uncertainties and nonlinearities
in differential equations like stochastic PDEs [21]. Furthermore, it is noticeable
that deep learning method is a perfect tool to prevent instability in solving pro-
cedure. Instability in other numerical methods is a big concern and in some
cases caused divergence in solving procedure [1]. In deep learning algorithms,
the stability of the solution highly dependent on weights W which are chosen
by solver itself [25]. The heat equation is one of the most important equations
in mathematical physics and engineering [22]. Heat conduction has been mod-
elled by Joseph Fourier using the second-order partial differential equation [9].
Two-dimensional heat conduction (known as Laplace equation) in the rectan-
gular domain is one of the famous classical problems in engineering mathemat-
ics and heat transfer, and there are extended numerical and analytical solu-
tions for it [3,14]. However, if the domain of the solving equation changes from
rectangular to an arbitrary domain, it will be really tough to represent the
analytical solution for that case, and the only way would be using numerical
methods [19].

We are interested in establishing a new method for studying natural phenom-
ena which are modelled by PDEs, specifically problems related to fluid dynamics
and heat transfer. In this paper, we focus on the case of 2-dimensional steady
state heat propagation inside the rectangular domain considering three smaller
rectangular obstacles with different temperatures inside it. We solved the gov-
erning equation for a large number of cases with different positions, sizes and
temperatures in obstacles by taking advantage of the finite difference method.
By changing the conditions of the problem and providing various situations, we
provide sufficient labelled inputs for our learning algorithm.

The fully connected deep neural network has been designed with several
hidden layers for this case. Since the number of input data was extremely large,
over-fitting methods have used to prevent this phenomenon in the learning
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procedure. After the learning process, the outputs of the network compared to
results for the same conditions which were produced by commercial software for
solving heat transfer and fluid flow problems, ANSYS FLUENT 19.0. Moreover,
in the specified case with no heated obstacle, the deep learning result has been
compared to the analytical solution extracted by orthogonal functions using
Fourier series.

2 Related Work

This work is a combination of two separate fields of study pursued by a wide
range of research communities. In this perspective, it is tried to find the best
and optimum deep learning algorithm to find the solution of the specified heat
conduction problem by taking advantage of the finite volume method in order
to generate learning data.

Laplace equation plays an important role in many scientific fields, such as
complex analysis [29], electromagnetic fields [34], fluid flow and heat transfer.
One of the first successful tries for solving this equation on the arbitrary domain
using numerical methods has been performed by Bruch and Zyvoloski for heat
conduction purposes in 1974 [4]. Although mesh based numerical methods are
strong tools in engineering problems, stability, the dependency of the solution to
the mesh and Necessity of resolving the problem by changing the conditions of
the problem are disadvantages of these methods, and motivate scientists to search
for analytical solutions or at least mesh-less methods [17]. Many efforts went on
finding an analytical solution for the Laplace equation on the arbitrary domain.
Crowdy represent an analytical solution for potential flow (Laplace equation)
past through obstacles on the infinite domain [6]. However, his attempts cannot
solve the same problem for heat propagation in a finite domain, because of the
difference in the boundary conditions.

Deep learning as an intelligence tool for prediction of the behaviour of the
dynamical systems widely has been used in thermal-fluid sciences. Miyanawala
and Jaiman has conducted an efficient deep learning technique for the model
reduction of the unsteady Navier-stocks equation flow problems [20]. Several
other types of research have been done related to the simulation and prediction
of the fluid flow dynamics [11,13,18,31].

Since predicting the solution of differential equations using deep neural net-
works requires having a large number of labelled correct input data, weakly
supervised learning algorithm using appropriate chosen convolutional kernel
would be could be a good choice for simple cases. This method can learn directly
from the initial condition [26]. Although this technique (which known as the
physical informed network) predict the solution with good accuracy for simple
physics, we focus on conventional learning methods to study the accuracy of
these methods in dealing with such problems.
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3 Methodology

This section is divided into two main parts. Firstly, the physics of heat propa-
gation in a two-dimensional domain (Ω) explain briefly, and also it is described
how input data for the learning procedure have been generated. In the second
part, the deep learning approach and our algorithms are discussed.

3.1 Heat-Transport

Looking at details of two-dimensional heat propagation mathematics, the first
step in this part is defining a proper space for solving the governing equation.
We have decided to choose the square domain for solving the Laplace equation.
Each side of the domain has its own boundary condition. Inside the main square,
three heated rectangular obstacles with arbitrary sizes and positions have been
considered Fig. 1. The aim of this definition is training our deep neural network
to learn the pattern of heat propagation, and make it able to predict the correct
temperature contours when the user gives the boundary conditions, positions
and sizes of the obstacles.

It is important to note that because of the high computational cost, we
consider the same temperature for all three obstacles, although this assumption
can be changed easily.

The general heat conduction formation known as 2-D transient heat conduc-
tion can be written in the form of Eq. 1 :

∂T

∂t
= α

(
∂2T

∂x2
+

∂2T

∂y2

)
(1)

where α > 0 is a coefficient of the thermal diffusivity of the plate, and T =
T (x, y, t) demonstrates the temperature value in the given position and time.

However, in this study, we are interested in studying the steady state of heat
transfer. So, the Eq. 1 would reform to Eq. 2 :

∂2T

∂x2
+

∂2T

∂y2
= 0 (2)

To solve Eq. 2 we need to specify the boundary conditions of the problem.
To solve the equation. in the simple rectangular domain with simplified

boundary conditions, there are several analytical methods, such as separation of
variables and using the error function. However, these methods in dealing with
more complicated B.C or domains become useless, and it is necessary to use
numerical methods.
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In this work, we considered constant temperature on our boundaries which
is known as the Dirichlet boundary condition [7].

Equations 3 and 4 depict the boundary conditions definition as follows :

∂Ω =
4∑

i=1

∂Ti +
3∑

s=1

∂As (3)

T |∂Ω = cte (4)

Fig. 1. Sample domain with obstacles

3.2 Data Generation

In order to provide proper input data as nourishment of the deep learning algo-
rithm, the Laplace equation has been solved numerically for various conditions.
These data after some treatment have been used in the input layer to train the
network correctly.

FiniteVolumeMethod. There are several numerical methods which iteratively
solve equations which are not possibly solved by analytical methods. Finite Vol-
ume is one of the comprehensive methods that can deal with complex problems in
solving differential equations. Although the concept of finite volume is based on
3-D problems, it can easily be extended to less topological dimensions [32].

To solve the Laplace equation using FVM, we need to discretize ∇2T = 0.
The temperature of the node (i, j) Fig. 2 calculates as follows :

∫
ΔV

∂

∂x

(
∂T

∂x

)
dx.dy +

∫
ΔV

∂

∂y

(
∂T

∂y

)
dx.dy = 0 (5)
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Fig. 2. Discretization of the domain

With assuming uniform square mesh and also considering linear temperature
flux change along directions calculation continues as follows :

Δy = Δx → Ae = Aw = An = As (6)

Γ =
A

δ
(7)

4ΓTp = Γ (Tw + Ts + Te + Tn) (8)

Based on Eq. 8, temperature of the node (i, j) can be calculated by Eq. 9 :

Ti,j =
Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1

4
(9)

Equation 9 was solved iteratively with Dirichlet boundary condition until con-
vergence.

Input Data Preparation. For easier analysis of produced data, we divide the
solution of the Eq. 9 into 40 big batches. Each batch contains input and output
files. The input file has been performed by 2500 combination of 19 separate
elements, such as the width and height of the main domain, size and position of
each rectangular obstacle, and also temperatures of each side of the domain. For
each set of input elements, a specified solution has been assigned using Eq. 9.
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Algorithm 1 demonstrates the procedure of solving the Eq. 9 for each input
matrix by assuming discussed conditions.

Input:
width, height, top temperature, right temperature, left temperature
bottom temperature
first rectangle, second rectangle, third rectangle, fixed temperature

Result:
Temperatire Distribution

Initialization:
{Ti,j}width,height

i=1,j=1 ← 0

{T1,j}height

j=1 ← top temprature

{Ti,height}width

i=1 ← right temprature

{Ti,1}width

i=1 ← left temprature

{Twidth,j}height

j=1 ← bottom temprature

SetF ixedTempratureInRectangle(T, first rectangle, fixed temprature)
SetF ixedTempratureInRectangle(T, second rectangle, fixed temprature)
SetF ixedTempratureInRectangle(T, third rectangle, fixed temprature)
dt ← 0.25
TOL ← 1e − 6
while error >TOL do

tmp ← T
for i ← 1 to width do

for j ← 1 to height do
if ¬PointIsInRectangles(Ti,j) then

tmp x ← tmpi+1,j − 2 ∗ tmpi,j + tmpi−1,j

tmp y ← tmpi,j+1 − 2 ∗ tmpi,j + tmpi,j−1

Ti,j ← dt ∗ (tmp x + tmp y) + tmpi,j

else
continue

end
end

end
error ← Max(Abstract(Subtract(tmp, T )))

end
Algorithm 1. Numerical data generation algorithm

Data Treatment. To prepare inputs of our deep neural network, firstly, by
taking advantage of average and variance, our data has been normalized. Then,
each element of the input matrices which indicates 19 initial data and address of
that element (i and j) will be considered as input features for the neural network.
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The output of the deep learning network will be compared to the solution for
the corresponding element which is extracted from the output file.

In order to ensure that our network will not be biased by a small proportion
of matrices, we have considered an acceptance rate to guarantee that no more
than a specified percentage of elements will be picked from a certain matrix.

3.3 Deep Learning

Deep learning is formed by three main part which are the input layer, hidden
layer and output layer. The input layer is a port for importing data into the
network. These data have been sent to the network in matrix form. In this
study, by using 21 neurons data was transferred from the input layer to the
hidden layer. Hidden Layer contains several sublayers, and each of them is made
by the specified number of neurons. This stage as the main part of the learning
procedure should learn the way that our certain physics work and predict the
correct temperature distribution. Finally, the output layer reports the results to
the user.

Fig. 3. Deep neural network diagram

Figure 3 illustrates the architecture of the deep learning process. In this archi-
tecture, the hidden layer consists of L layers. The schematic function of each
neuron in the hidden layer can be shown as Fig. 4. Input data for each neu-
ron receives from all neurons in the previous layer. These inputs by using vector
weight (W ) and the bias value (B), linearly combined (

−→
WX +B) and the output

result for the neuron is calculated. The process at each neuron will get finished
by implementing the activation function. In this stage we used the Leaky Relu
activation function as shown in Eq. 10 :

LeakyRelu(x) =
{

x, x > 0
x ∗ 0.01, x ≤ 0 (10)
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Fig. 4. Single neuron diagram

In general for layer l, according to the Fig. 4 output of the layer l is equal to
Z

[l]
which is shown in Eq. 11 :

Z
[l]

= W [l] ∗ A[l−1] + B[l] (11)

Where w[l] is the weight matrix of input for layer l, A[l−1] is input of the
layer, and B[l] is a vector of bias values of this layer.

Also, the input of the layer A[l] is defined as follows :

A[l] = g[l](Z
[l]

) (12)

The function g[l] in Eq. 12 represent the activation function in layer l.
Before starting the learning procedure, the values of the B[l] are 0, and the

elements of the matrix W [l] are initialized randomly between 0 and 1.
The purpose of the learning network is finding proper w and B for each layer

which minimizes the error function.

min J
W,B

(W,B) (13)

Where J is error function which is defined as follows :

J(W,B) =
1
m

‖Y ′ − Y ‖22 (14)

In Eq. 14, Y ′ demonstrates amount of data which is generated by deep learning,
also Y and m are real data and numbers of input data respectively.

To prevent over fitting three regularization techniques which are
Dropout [28], Momentum [30] and Weight decay [15] have been utilized
simultaneously.
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After implementation of these three methods Eq. 14 reformed to Eq. 15 as
follows :

J(W,B) =
1
m

‖Y ′ − Y ‖22 +
λ

2m
‖W‖22 (15)

Where λ is a coefficient which should be set in a way that minimizes the
error function.

There are several optimization methods to minimize error function 15. In
this work, we checked different optimizers to get the best accuracy, and finally,
we chose SGD (Stochastic Gradient Descent) as our optimizer function. This
algorithm, by updating the parameters θn of the object J(θn) (as shown in
Eq. 16) tries to find the best parameters for minimizing the error function.

θn+1 = θn − α
∂

∂θn
J(θn) (16)

In Eq. 16 θ is a vector parameter, also J and α are cost function and slope
parameter respectively.

The SGD algorithm can estimate the gradient of the parameters only by
using a limited number of training examples.

Finally, to find out the learning parameters we categorize the generated data
into 3 main categories. From all generated data, 98% has been allocated for
training, and the percentage of validating and testing was 1% for each. Also,
for more precision and less run time, training data were divided into 1000 mini-
batches.

4 Results

In this section, results which have been generated by deep learning is compared
to true data by taking advantage of different experiments. In the first stage, deep
learning’s was analyzed based on the error rate in training and test time. The
next step was comparing deep learning results by ANSYS answers. And finally,
the accuracy of our network was analyzed by the utility of the analytical solution
for the simplified case.

4.1 Analyzing Deep Learning Results

In this section, deep learning precision was analyzed by changes the number of
epochs and varying threshold coefficient. For this purpose, we used a different
number of epochs (from 100 to 2000) in the input layer. Also by changing the
threshold coefficient, it is possible to monitor the effect of epochs in the final
results. In this experiment, 98% of true data was considered for training the
network, and 2% for validation and test.
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The Mean Square Error index has been used to calculate the training and
test error. This index is defined as follows 17 :

MSE =

n∑
i=0

(yi − y′i)
2

n
(17)

The Threshold concept has utilized in order to compare the true data with the
results from the deep learning method. Whereas y′ is the deep learning calculated
quantity and y represents the amount of numerical solution generated by FVM.

If the threshold quantity was more than left-hand side of Eq. 18, then both
values will be assumed as equal.

|y − y′| < θ (18)

Table 1. Epochs’ number effect on deep learning results

Epoch number Training error Test error Th(1) Th(0.1) Th(0.01)

100 0.984 4.125 75.12% 71.78% 67.47%

200 0.876 3.745 77.83% 74.34% 69.87%

300 0.821 3.424 79.47% 77.54% 72.39%

500 0.700 2.145 87.08% 83.75% 80.19%

1000 0.576 1.406 94.19% 91.07% 89.49%

2000 0.319 0.958 97.19% 93.67% 91.87%

Looking at the Table 1 in more detail, clearly, by increasing the epoch num-
ber, precision of the final results was increased for all thresholds. Also, by con-
sidering an epoch number, the precision decrease in smaller thresholds.

4.2 Comparison with ANSYS

For engineering purposes, we need to visualize the results of computations to
make it easier for engineers to have better judgment about them.

In this part, we compare the results which are extracted by deep learning
algorithm with the output of the commercial program (ANSYS Fluent 19.0).

Same geometries with high-quality mesh have been generated and imported
to the Fluent solver. All the computations have conducted by the second-order
scheme, and the calculations have proceeded until the full convergence.

In Table 2 three sample cases of deep learning and numerical results are
compared. Although ANSYS results were quite similar to deep learning output,
in regions that thermal gradient was more than other areas, deep learning could
not perfectly estimate the temperature distribution.
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Table 2. Comparing deep learning with ANSYS results

Deep learning results Numerical results

a b

c d

e f
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5 Conclusion

We have shown that deep learning successfully can learn the physics of heat
transfer in two-dimensional space. We found that there are various factors which
directly influence the quality of the deep learning prediction, such as opti-
mizer method, activation function and momentum variable. It is found that
the stochastic gradient descent obviously has better performance in comparison
to other optimizers. Our deep learning results sufficiently were similar to ANSYS
results considering the number of data which were utilized for training the net-
work. Overall, deep learning as a strong tool can provide an amazing method
for representing the numerical solution for different kinds of PDEs.

References

1. Ascher, U.M.: Numerical Methods for Evolutionary Differential Equations. vol. 5.
Siam (2008)

2. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

3. Bergman, T.L., Incropera, F.P., Lavine, A.S., Dewitt, D.P.: Introduction to Heat
Transfer. Wiley (2011)

4. Bruch Jr., J.C., Zyvoloski, G.: Transient two-dimensional heat conduction problems
solved by the finite element method. Int. J. Numer. Methods Eng. 8(3), 481–494
(1974)

5. Chakraverty, S., Mall, S.: Artificial Neural Networks for Engineers and Scientists:
Solving Ordinary Differential Equations. CRC Press (2017)

6. Crowdy, D.G.: Analytical solutions for uniform potential flow past multiple cylin-
ders. Eur. J. Mech. B/Fluids 25(4), 459–470 (2006)
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